E.S.R. Study of the Cation Radical of Rh₂(O₂CEt)₄(PPh₃)₂; a σ Electron Radical

By TAKASHI KAWAMURA,* KADZUHIKO FUKAMACHI, and SHIGERU HAYASHIDA (Department of Hydrocarbon Chemistry, Faculty of Engineering, Kyoto University, Kyoto 606, Japan)

Summary Electrochemical or radiochemical oxidation of $Rh_2(O_2CEt)_4(PPh_3)_2$ gives its cation radical, the e.s.r. spectra of which reveal that the odd electron orbital has σ symmetry with respect to the P-Rh-Rh-P axis and that the odd electron is distributed over the phosphorus and rhodium atoms.

THERE has been considerable controversy regarding the multiplicity of the short metal-metal bond in dirhodium tetracarboxylates.¹⁻³ A triple bond¹ with a configuration of $\sigma^2 \pi^4 \delta^2 \delta^{*2} \sigma_n^{\ 2} \sigma_n^2$ and a single bond^{2,3} with a $\sigma^2 \pi^4 \delta^2 \pi^{*4} \delta^{*2}$ configuration have been proposed. Recent studies⁴ on the stability of $[Rh_2(O_2CMe)_4(H_2O)_2]^+$ have suggested that e.s.r. spectroscopy can contribute⁵ to an understanding of the electronic structure of the Rh-Rh bond.

Cyclic voltammetry of $\text{Rh}_2(\text{O}_2\text{CEt})_4(\text{PPh}_3)_2^6$ in $\text{CH}_2\text{Cl}_2^{\dagger}$ showed a quasi-reversible one-electron (coulometry, $n = 1.0 \pm 0.1$) oxidation wave at $E_{3/4p}$ 0.60 V vs. standard calomel electrode (s.c.e.); $E_{pa} - E_{pc} = 72 \pm 5$ mV and $i_{pa}/i_{pc} = 1.0 \pm 0.1$.

Electrochemical oxidation of the dirhodium complex in CH_2Cl_{\circ} solution containing Bun_4NClO_4 on an Au anode at 0.75 V vs. s.c.e. at -20 °C gave a reddish-purple solution (λ_{max} 525 nm) whose e.s.r. spectrum showed a broad triplet of 16.8 mT with a g factor of 2.109. When the solution was frozen and subjected to e.s.r. spectroscopy at -170 °C, the spectrum of an axially symmetric species was observed (Figure); the \perp component was a triplet (15.1 mT) with $g_{\perp} = 2.157$ and the || component was a triple triplet (21.7 and 1.47 mT) with $g_{\perp} = 1.994.\ddagger$ The same solid phase

FIGURE. First derivative (A) and second derivative (B) e.s.r. spectra of $[Rh_2(O_2CEt)_4(PPh_3)_2]^{+*}$ electrochemically generated in CH_2Cl_2 and observed at -170 °C.

spectrum was observed at -196 °C from a γ -irradiated Freon mixture (1:1 v/v CF₂BrCF₂Br and CFCl₃) glass containing the dirhodium complex. The solid Freon mixture is known to be an appropriate matrix for trapping cationic species formed from a solute upon radiolysis.⁷

The paramagnetic species has two pairs of equivalent nuclei both with I = 1/2 (I = 1/2 for ³¹P and ¹⁰³Rh) and is thus attributed to $[Rh_2(O_2CEt)_4(PPh_3)_2]^+$. A comparison of fluid and solid phase spectra shows that the anisotropic couplings of $15 \cdot 1$ (\bot component) and $21 \cdot 7$ mT (|| component) are due to a pair of equivalent nuclei of I = 1/2 and that they have the same sign which is tentatively assumed to be

† Dirhodium complex 0.5 mmol l^{-1} ; Buⁿ₄NClO₄ 0.15 mol l^{-1} ; Pt wire working electrode; potential sweep 60 mV s⁻¹. The authors are indebted to Professor K. Okamoto and Dr. K. Komatsu for cyclic voltammetry instruments.

‡ E.s.r. spectra were analysed to the second order with respect to the hyperfine interactions.

positive. The isotropic and anisotropic parts of the coupling are a = 17.3 and 2b = 4.4 mT, respectively. This coupling anisotropy is greater than that of 103 Rh with a 4d spin density of 1/2.8 The largest triplet splitting is, therefore, assigned to the pair of ³¹P nuclei. Odd electron densities on the 3s and 3p orbitals on each phosphorus atom are estimated as $ho(\mathrm{P}, 3s) = 17 \cdot 3/368 = 0.047$ and $ho(\mathrm{P}, 3p) =$ $4 \cdot 4/20 \cdot 2 = 0 \cdot 22.8$ The large odd electron density on the phosphorus atoms (total 53%) and the inequality of $a_{\parallel}(\mathbf{P}) > a_{\perp}$ (P) are consistent only with the odd electron orbital consisting of phosphine lone pair orbitals; the odd electron orbital has σ symmetry with respect to the P-Rh-Rh-P axis. The usual approximate treatment⁸ of the ratio of $\rho(P, 3p)/\rho(P, 3s)$ gave a C-P-C bond angle of 112°, which is between that of triphenylphosphine $(103^{\circ})^9$ and those of cation radicals of phosphines (ca. 115°),10 as expected.

The σ symmetry $(a_{1g} \text{ or } a_{2u} \text{ in an approximate point})$ group of D_{4h}) of the odd electron orbital is consistent also with the observed g_{\parallel} which is not very different from the

free spin g factor (2.002). The positive shift of g_1 from 2.002, far larger than the corresponding shifts observed for $(PR_3)^+$ and $[(PR_3)_2]^+$.¹⁰ should have been induced by excitations of electrons in π or π^* (e_u or e_g in D_{4h}) orbitals with appreciable metal character to the metal part of the odd electron orbital through L-S couplings. The odd electron orbital is thus concluded to consist of phosphine lone pair orbitals (ca. 50%) as well as of metal orbitals with σ symmetry with respect to the molecular axis.

At a glance this result supports the triple bond model¹ with the highest occupied orbital of σ_n or σ_n' . However, this result is also consistent with the single bond model² if the Rh-Rh σ bonding orbital [corresponding to the $8a_{\mathbf{g}}$ orbital of $Rh_2(O_2CH)_4(H_2O)_2$ in ref. 2] is the highest occupied orbital; SCF-X α -SW calculations suggest that the Rh-Rh σ bonding orbital of Rh₂(O₂CH)₄L₂ attains Rh-L antibonding character and shifts upward in energy when L is a strong σ electron donor.^{2,3}§

(Received, 19th June 1979; Com. 651.)

§ The energy difference between the $8a_g(\sigma)$ orbital and the highest occupied orbital, $7b_{1u}(\delta^*)$, calculated for $Rh_2(O_2CH)_4(H_2O)_2$ by the SCF-X α -SW method was 1.4 eV (see reference 2).

- ¹ K. G. Caulton and F. A. Cotton, J. Amer. Chem. Soc., 1971, 93, 1914. ² J. G. Norman, Jr. and H. J. Kolari, J. Amer. Chem. Soc., 1978, 100, 791.

- ⁹G. G. Christoph and Y.-B. Koh, J. Amer. Chem. Soc., 1979, 101, 1422.
 ⁴C. R. Wilson and H. Taube, Inorg. Chem., 1975, 14, 2276; R. D. Cannon, D. B. Powell, K. Sarawek, and J. S. Stillman, J C.S.
- Chem. Comm., 1976, 31; J. J. Ziółkowski, M. Moszner, and T. Glowiak, *ibid.*, 1977, 760.
 ⁵ Cf. S. W. Bratt and M. C. R. Symons, J.C.S. Dalton, 1977, 1314 and references cited therein.
 ⁶ T. A. Stephenson, S. M. Morehouse, A. P. Powell, J. P. Heffer, and G. Wilkinson, J. Chem. Soc., 1965, 3632.

 - A. Grimison and G. A. Simpson, J. Phys. Chem., 1968, 72, 1176; T. Shida, Y. Nosaka, and T. Kato, *ibid.*, 1978, 82, 695.
 B. A. Goodman and J. B. Raynor, Adv. Inorg. Chem. Radiochem., 1970, 13, 135.

 - ⁹ J. J. Daly, J. Chem. Soc., 1964, 3799.
 - ¹⁰ A. Begum, A. R. Lyons, and M. C. R. Symons, J. Chem. Soc. (A), 1971, 2290; J.C.S. Faraday II, 1972, 68, 1589.